95 research outputs found

    The Translation of Japanese Literature in Spain

    Get PDF
    10 páginas, 3 figuras, I figura, 1 tabla -- PAGS nros. 291-300Many fungi grow over a wide pH range and their gene expression is tailored to the environmental pH. In Aspergillus nidulans, the transcription factor PacC, an activator of genes expressed in alkaline conditions and a repressor of those expressed in acidic conditions, undergoes two processing proteolyses, the first being pH-signal dependent and the second proteasomal. Signal transduction involves a 'go-between' connecting two complexes, one of which comprises two plasma membrane proteins and an arrestin and the other comprises PacC, a cysteine protease, a scaffold and endosomal components. The Saccharomyces cerevisiae PacC orthologue, Rim101p, differs in that it does not undergo the second round of proteolysis and it functions directly as a repressor only. PacC/Rim101-mediated pH regulation is crucial to fungal pathogenicityPeer reviewe

    Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper.

    Get PDF
    The EUROFUNG network is a virtual centre of multidisciplinary expertise in the field of fungal biotechnology. The first academic-industry Think Tank was hosted by EUROFUNG to summarise the state of the art and future challenges in fungal biology and biotechnology in the coming decade. Currently, fungal cell factories are important for bulk manufacturing of organic acids, proteins, enzymes, secondary metabolites and active pharmaceutical ingredients in white and red biotechnology. In contrast, fungal pathogens of humans kill more people than malaria or tuberculosis. Fungi are significantly impacting on global food security, damaging global crop production, causing disease in domesticated animals, and spoiling an estimated 10 % of harvested crops. A number of challenges now need to be addressed to improve our strategies to control fungal pathogenicity and to optimise the use of fungi as sources for novel compounds and as cell factories for large scale manufacture of bio-based products. This white paper reports on the discussions of the Think Tank meeting and the suggestions made for moving fungal bio(techno)logy forward

    PalC, One of Two Bro1 Domain Proteins in the Fungal pH Signalling Pathway, Localizes to Cortical Structures and Binds Vps32

    Get PDF
    PalC, distantly related to Saccharomyces cerevisiaeperipheral endosomal sorting complexes required for transport III (ESCRT-III) component Bro1p and one of six Aspergillus nidulanspH signalling proteins, contains a Bro1 domain. Green fluorescent protein (GFP)-tagged PalC is recruited to plasma membrane-associated punctate structures upon alkalinization, when pH signalling is active. PalC recruitment to these structures is dependent on the seven transmembrane domain (7-TMD) receptor and likely pH sensor PalH. PalC is a two-hybrid interactor of the ESCRT-III Vps20/Vps32 subcomplex and binds Vps32 directly. This binding is largely impaired by Pro439Phe, Arg442Ala and Arg442His substitutions in a conserved region mediating interaction of Bro1p with Vps32p, but these substitutions do not prevent cortical punctate localization, indicating Vps32 independence. In contrast, Arg442Δ impairs Vps32 binding and prevents PalC-GFP recruitment to cortical structures. pH signalling involves a plasma membrane complex including the 7-TMD receptor PalH and the arrestin-like PalF and an endosomal membrane complex involving the PalB protease, the transcription factor PacC and the Vps32 binding, Bro1-domain-containing protein PalA. PalC, which localizes to cortical structures and can additionally bind a component of ESCRT-III, has the features required to bridge these two entities. A likely S. cerevisiaeorthologue of PalC has been identified, providing the basis for a unifying hypothesis of gene regulation by ambient pH in ascomycetes

    Involvement of the exomer complex in the polarized transport of Ena1 required for Saccharomyces cerevisiae survival against toxic cations

    Get PDF
    [EN] Exomer is an adaptor complex required for the direct transport of a selected number of cargoes from the trans-Golgi network (TGN) to the plasma membrane in Saccharomyces cerevisiae However, exomer mutants are highly sensitive to increased concentrations of alkali metal cations, a situation that remains unexplained by the lack of transport of any known cargoes. Here we identify several HAL genes that act as multicopy suppressors of this sensitivity and are connected to the reduced function of the sodium ATPase Ena1. Furthermore, we find that Ena1 is dependent on exomer function. Even though Ena1 can reach the plasma membrane independently of exomer, polarized delivery of Ena1 to the bud requires functional exomer. Moreover, exomer is required for full induction of Ena1 expression after cationic stress by facilitating the plasma membrane recruitment of the molecular machinery involved in Rim101 processing and activation of the RIM101 pathway in response to stress. Both the defective localization and the reduced levels of Ena1 contribute to the sensitivity of exomer mutants to alkali metal cations. Our work thus expands the spectrum of exomer-dependent proteins and provides a link to a more general role of exomer in TGN organization.We acknowledge Emma Keck for English language revision. We also thank members of the Translucent group, J. Arino, J. Ramos, and L. Yenush, for many useful discussions throughout this work and especially L. Yenush for her generous gift of strains and reagents. The help of O. Vincent was essential for developing the work involving RIM101. We also thank R. Valle for her technical assistance at the CR Laboratory. M. Trautwein is acknowledged for data acquisition and discussions during the early stages of the project. C.A. is supported by a USAL predoctoral fellowship. Work at the Spang laboratory was supported by the University of Basel and the Swiss National Science Foundation (31003A-141207 and 310030B-163480). C.R. was supported by grant SA073U14 from the Regional Government of Castilla y Leon and by grant BFU2013-48582-C2-1-P from the CICYT/FEDER Spanish program. J.M.M. acknowledges the financial support from Universitat Politecnica de Valencia project PAID-06-10-1496.Anton, C.; Zanolari, B.; Arcones, I.; Wang, C.; Mulet, JM.; Spang, A.; Roncero, C. (2017). Involvement of the exomer complex in the polarized transport of Ena1 required for Saccharomyces cerevisiae survival against toxic cations. Molecular Biology of the Cell. 28(25):3672-3685. https://doi.org/10.1091/mbc.E17-09-0549S367236852825Ariño, J., Ramos, J., & Sychrová, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09Bard, F., & Malhotra, V. (2006). The Formation of TGN-to-Plasma-Membrane Transport Carriers. Annual Review of Cell and Developmental Biology, 22(1), 439-455. doi:10.1146/annurev.cellbio.21.012704.133126Barfield, R. M., Fromme, J. C., & Schekman, R. (2009). The Exomer Coat Complex Transports Fus1p to the Plasma Membrane via a Novel Plasma Membrane Sorting Signal in Yeast. Molecular Biology of the Cell, 20(23), 4985-4996. doi:10.1091/mbc.e09-04-0324Bonifacino, J. S. (2014). Adaptor proteins involved in polarized sorting. Journal of Cell Biology, 204(1), 7-17. doi:10.1083/jcb.201310021Bonifacino, J. S., & Glick, B. S. (2004). The Mechanisms of Vesicle Budding and Fusion. Cell, 116(2), 153-166. doi:10.1016/s0092-8674(03)01079-1Bonifacino, J. S., & Lippincott-Schwartz, J. (2003). Coat proteins: shaping membrane transport. Nature Reviews Molecular Cell Biology, 4(5), 409-414. doi:10.1038/nrm1099Carlson, M., & Botstein, D. (1982). Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell, 28(1), 145-154. doi:10.1016/0092-8674(82)90384-1Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., … Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823De Matteis, M. A., & Luini, A. (2008). Exiting the Golgi complex. Nature Reviews Molecular Cell Biology, 9(4), 273-284. doi:10.1038/nrm2378De Nadal, E., Clotet, J., Posas, F., Serrano, R., Gomez, N., & Arino, J. (1998). The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proceedings of the National Academy of Sciences, 95(13), 7357-7362. doi:10.1073/pnas.95.13.7357Drubin, D. G., & Nelson, W. J. (1996). Origins of Cell Polarity. Cell, 84(3), 335-344. doi:10.1016/s0092-8674(00)81278-7Fell, G. L., Munson, A. M., Croston, M. A., & Rosenwald, A. G. (2011). Identification of Yeast Genes Involved in K+Homeostasis: Loss of Membrane Traffic Genes Affects K+Uptake. G3: Genes|Genomes|Genetics, 1(1), 43-56. doi:10.1534/g3.111.000166Ferrando, A., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1995). Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15(10), 5470-5481. doi:10.1128/mcb.15.10.5470Forsmark, A., Rossi, G., Wadskog, I., Brennwald, P., Warringer, J., & Adler, L. (2011). Quantitative Proteomics of Yeast Post-Golgi Vesicles Reveals a Discriminating Role for Sro7p in Protein Secretion. Traffic, 12(6), 740-753. doi:10.1111/j.1600-0854.2011.01186.xGaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8(7), 2848-2859. doi:10.1128/mcb.8.7.2848Galindo, A., Calcagno-Pizarelli, A. M., Arst, H. N., & Penalva, M. A. (2012). An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane. Journal of Cell Science, 125(7), 1784-1795. doi:10.1242/jcs.098897Goldstein, A. L., & McCusker, J. H. (1999). Three new dominant drug resistance cassettes for gene disruption inSaccharomyces cerevisiae. Yeast, 15(14), 1541-1553. doi:10.1002/(sici)1097-0061(199910)15:143.0.co;2-kHayashi, M., Fukuzawa, T., Sorimachi, H., & Maeda, T. (2005). Constitutive Activation of the pH-Responsive Rim101 Pathway in Yeast Mutants Defective in Late Steps of the MVB/ESCRT Pathway. Molecular and Cellular Biology, 25(21), 9478-9490. doi:10.1128/mcb.25.21.9478-9490.2005Herrador, A., Herranz, S., Lara, D., & Vincent, O. (2009). Recruitment of the ESCRT Machinery to a Putative Seven-Transmembrane-Domain Receptor Is Mediated by an Arrestin-Related Protein. Molecular and Cellular Biology, 30(4), 897-907. doi:10.1128/mcb.00132-09Herrador, A., Livas, D., Soletto, L., Becuwe, M., Léon, S., & Vincent, O. (2015). Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge. Molecular Biology of the Cell, 26(11), 2128-2138. doi:10.1091/mbc.e14-11-1552Herranz, S., Rodriguez, J. M., Bussink, H.-J., Sanchez-Ferrero, J. C., Arst, H. N., Penalva, M. A., & Vincent, O. (2005). Arrestin-related proteins mediate pH signaling in fungi. Proceedings of the National Academy of Sciences, 102(34), 12141-12146. doi:10.1073/pnas.0504776102Hoya, M., Yanguas, F., Moro, S., Prescianotto-Baschong, C., Doncel, C., de León, N., … Valdivieso, M.-H. (2016). Traffic Through theTrans-Golgi Network and the Endosomal System Requires Collaboration Between Exomer and Clathrin Adaptors in Fission Yeast. Genetics, 205(2), 673-690. doi:10.1534/genetics.116.193458Huranova, M., Muruganandam, G., Weiss, M., & Spang, A. (2016). Dynamic assembly of the exomer secretory vesicle cargo adaptor subunits. EMBO reports, 17(2), 202-219. doi:10.15252/embr.201540795Kung, L. F., Pagant, S., Futai, E., D’Arcangelo, J. G., Buchanan, R., Dittmar, J. C., … Miller, E. A. (2011). Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. The EMBO Journal, 31(4), 1014-1027. doi:10.1038/emboj.2011.444Lamb, T. M., & Mitchell, A. P. (2003). The Transcription Factor Rim101p Governs Ion Tolerance and Cell Differentiation by Direct Repression of the Regulatory Genes NRG1 and SMP1 in Saccharomyces cerevisiae. Molecular and Cellular Biology, 23(2), 677-686. doi:10.1128/mcb.23.2.677-686.2003Lamb, T. M., Xu, W., Diamond, A., & Mitchell, A. P. (2000). Alkaline Response Genes ofSaccharomyces cerevisiaeand Their Relationship to theRIM101Pathway. Journal of Biological Chemistry, 276(3), 1850-1856. doi:10.1074/jbc.m008381200Madrid, R., Gómez, M. J., Ramos, J., & Rodrı́guez-Navarro, A. (1998). Ectopic Potassium Uptake intrk1 trk2Mutants ofSaccharomyces cerevisiaeCorrelates with a Highly Hyperpolarized Membrane Potential. Journal of Biological Chemistry, 273(24), 14838-14844. doi:10.1074/jbc.273.24.14838Maresova, L., & Sychrova, H. (2004). Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Molecular Microbiology, 55(2), 588-600. doi:10.1111/j.1365-2958.2004.04410.xMarqués, M. C., Zamarbide-Forés, S., Pedelini, L., Llopis-Torregrosa, V., & Yenush, L. (2015). A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae. FEMS Yeast Research, 15(4). doi:10.1093/femsyr/fov017Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328Mulet, J. M., & Serrano, R. (2002). Simultaneous determination of potassium and rubidium content in yeast. Yeast, 19(15), 1295-1298. doi:10.1002/yea.909Murguía, J. R., Bellés, J. M., & Serrano, R. (1996). The YeastHAL2Nucleotidase Is anin VivoTarget of Salt Toxicity. Journal of Biological Chemistry, 271(46), 29029-29033. doi:10.1074/jbc.271.46.29029Obara, K., & Kihara, A. (2014). Signaling Events of the Rim101 Pathway Occur at the Plasma Membrane in a Ubiquitination-Dependent Manner. Molecular and Cellular Biology, 34(18), 3525-3534. doi:10.1128/mcb.00408-14Paczkowski, J. E., & Fromme, J. C. (2014). Structural Basis for Membrane Binding and Remodeling by the Exomer Secretory Vesicle Cargo Adaptor. Developmental Cell, 30(5), 610-624. doi:10.1016/j.devcel.2014.07.014Paczkowski, J. E., Richardson, B. C., & Fromme, J. C. (2015). Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends in Cell Biology, 25(7), 408-416. doi:10.1016/j.tcb.2015.02.005Paczkowski, J. E., Richardson, B. C., Strassner, A. M., & Fromme, J. C. (2012). The exomer cargo adaptor structure reveals a novel GTPase-binding domain. The EMBO Journal, 31(21), 4191-4203. doi:10.1038/emboj.2012.268Parsons, A. B., Brost, R. L., Ding, H., Li, Z., Zhang, C., Sheikh, B., … Boone, C. (2003). Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nature Biotechnology, 22(1), 62-69. doi:10.1038/nbt919Peñalva, M. A., Lucena-Agell, D., & Arst, H. N. (2014). Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Current Opinion in Microbiology, 22, 49-59. doi:10.1016/j.mib.2014.09.005Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R., & Mulet, J. M. (2013). Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 13(1), 97-106. doi:10.1111/1567-1364.12013RIOS, G., FERRANDO, A., & SERRANO, R. (1997). Mechanisms of Salt Tolerance Conferred by Overexpression of theHAL1 Gene inSaccharomyces cerevisiae. Yeast, 13(6), 515-528. doi:10.1002/(sici)1097-0061(199705)13:63.0.co;2-xRitz, A. M., Trautwein, M., Grassinger, F., & Spang, A. (2014). The Prion-like Domain in the Exomer-Dependent Cargo Pin2 Serves as a trans-Golgi Retention Motif. Cell Reports, 7(1), 249-260. doi:10.1016/j.celrep.2014.02.026Rockenbauch, U., Ritz, A. M., Sacristan, C., Roncero, C., & Spang, A. (2012). The complex interactions of Chs5p, the ChAPs, and the cargo Chs3p. Molecular Biology of the Cell, 23(22), 4402-4415. doi:10.1091/mbc.e11-12-1015Roncero, C. (2002). The genetic complexity of chitin synthesis in fungi. Current Genetics, 41(6), 367-378. doi:10.1007/s00294-002-0318-7Rothfels, K., Tanny, J. C., Molnar, E., Friesen, H., Commisso, C., & Segall, J. (2005). Components of the ESCRT Pathway, DFG16, and YGR122w Are Required for Rim101 To Act as a Corepressor with Nrg1 at the Negative Regulatory Element of the DIT1 Gene of Saccharomyces cerevisiae. Molecular and Cellular Biology, 25(15), 6772-6788. doi:10.1128/mcb.25.15.6772-6788.2005Santos, B., & Snyder, M. (1997). Targeting of Chitin Synthase 3 to Polarized Growth Sites in Yeast Requires Chs5p and Myo2p. Journal of Cell Biology, 136(1), 95-110. doi:10.1083/jcb.136.1.95Sato, M., Dhut, S., & Toda, T. (2005). New drug-resistant cassettes for gene disruption and epitope tagging inSchizosaccharomyces pombe. Yeast, 22(7), 583-591. doi:10.1002/yea.1233Schekman, R., & Orci, L. (1996). Coat Proteins and Vesicle Budding. Science, 271(5255), 1526-1533. doi:10.1126/science.271.5255.1526Sopko, R., Huang, D., Preston, N., Chua, G., Papp, B., Kafadar, K., … Andrews, B. (2006). Mapping Pathways and Phenotypes by Systematic Gene Overexpression. Molecular Cell, 21(3), 319-330. doi:10.1016/j.molcel.2005.12.011Spang, A. (2008). Membrane traffic in the secretory pathway. Cellular and Molecular Life Sciences, 65(18), 2781-2789. doi:10.1007/s00018-008-8349-yStarr, T. L., Pagant, S., Wang, C.-W., & Schekman, R. (2012). Sorting Signals That Mediate Traffic of Chitin Synthase III between the TGN/Endosomes and to the Plasma Membrane in Yeast. PLoS ONE, 7(10), e46386. doi:10.1371/journal.pone.0046386Trautwein, M., Schindler, C., Gauss, R., Dengjel, J., Hartmann, E., & Spang, A. (2006). Arf1p, Chs5p and the ChAPs are required for export of specialized cargo from the Golgi. The EMBO Journal, 25(5), 943-954. doi:10.1038/sj.emboj.7601007Trilla, J. A., Durán, A., & Roncero, C. (1999). Chs7p, a New Protein Involved in the Control of Protein Export from the Endoplasmic Reticulum that Is Specifically Engaged in the Regulation of Chitin Synthesis in Saccharomyces cerevisiae. Journal of Cell Biology, 145(6), 1153-1163. doi:10.1083/jcb.145.6.1153Valdivia, R. H., Baggott, D., Chuang, J. S., & Schekman, R. W. (2002). The Yeast Clathrin Adaptor Protein Complex 1 Is Required for the Efficient Retention of a Subset of Late Golgi Membrane Proteins. Developmental Cell, 2(3), 283-294. doi:10.1016/s1534-5807(02)00127-2Wadskog, I., Forsmark, A., Rossi, G., Konopka, C., Öyen, M., Goksör, M., … Adler, L. (2006). The Yeast Tumor Suppressor Homologue Sro7p Is Required for Targeting of the Sodium Pumping ATPase to the Cell Surface. Molecular Biology of the Cell, 17(12), 4988-5003. doi:10.1091/mbc.e05-08-0798Wang, C.-W., Hamamoto, S., Orci, L., & Schekman, R. (2006). Exomer: a coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. Journal of Cell Biology, 174(7), 973-983. doi:10.1083/jcb.200605106Weiskoff, A. M., & Fromme, J. C. (2014). Distinct N-terminal regions of the exomer secretory vesicle cargo Chs3 regulate its trafficking itinerary. Frontiers in Cell and Developmental Biology, 2. doi:10.3389/fcell.2014.00047Yahara, N., Ueda, T., Sato, K., & Nakano, A. (2001). Multiple Roles of Arf1 GTPase in the Yeast Exocytic and Endocytic Pathways. Molecular Biology of the Cell, 12(1), 221-238. doi:10.1091/mbc.12.1.221Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920Zanolari, B., Rockenbauch, U., Trautwein, M., Clay, L., Barral, Y., & Spang, A. (2011). Transport to the plasma membrane is regulated differently early and late in the cell cycle in Saccharomyces cerevisiae. Journal of Cell Science, 124(7), 1055-1066. doi:10.1242/jcs.07237

    Sequencing of \u3ci\u3eAspergillus nidulans\u3c/i\u3e and comparative analysis with \u3ci\u3eA. fumigatus\u3c/i\u3e and \u3ci\u3eA. oryzae\u3c/i\u3e

    Get PDF
    The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso, and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation. Document includes all supplementary information (820 pages). Supplementary files are also attached below as Related files. THERE IS NO SUPPLEMENTARY FILE #7. PDF file size (with supplementary files included) is 10 Mbytes. An optimized version of the ARTICLE ONLY is attached as a Related File and is 1.9 Mbytes

    Sequencing of \u3ci\u3eAspergillus nidulans\u3c/i\u3e and comparative analysis with \u3ci\u3eA. fumigatus\u3c/i\u3e and \u3ci\u3eA. oryzae\u3c/i\u3e

    Get PDF
    The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso, and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation. Document includes all supplementary information (820 pages). Supplementary files are also attached below as Related files. THERE IS NO SUPPLEMENTARY FILE #7. PDF file size (with supplementary files included) is 10 Mbytes. An optimized version of the ARTICLE ONLY is attached as a Related File and is 1.9 Mbytes

    Clinical and Ecological Impact of an Educational Program to Optimize Antibiotic Treatments in Nursing Homes (PROA-SENIOR): A Cluster, Randomized, Controlled Trial and Interrupted Time-Series Analysis

    Get PDF
    [Background] Antimicrobial stewardship programs (ASPs) are recommended in nursing homes (NHs), although data are limited. We aimed to determine the clinical and ecological impact of an ASP for NHs.[Methods] We performed a cluster, randomized, controlled trial and a before–after study with interrupted time-series analyses in 14 NHs for 30 consecutive months from July 2018 to December 2020 in Andalusia, Spain. Seven facilities implemented an ASP with a bundle of 5 educational measures (general ASP) and 7 added 1-to-1 educational interviews (experimental ASP). The primary outcome was the overall use of antimicrobials, calculated monthly as defined daily doses (DDD) per 1000 resident days (DRD).[Results] The total mean antimicrobial consumption decreased by 31.2% (−16.72 DRD; P = .045) with respect to the preintervention period; the overall use of quinolones and amoxicillin–clavulanic acid dropped by 52.2% (P = .001) and 42.5% (P = .006), respectively; and the overall prevalence of multidrug-resistant organisms (MDROs) decreased from 24.7% to 17.4% (P = .012). During the intervention period, 12.5 educational interviews per doctor were performed in the experimental ASP group; no differences were found in the total mean antimicrobial use between groups (−14.62 DRD; P = .25). Two unexpected coronavirus disease 2019 waves affected the centers increasing the overall mean use of antimicrobials by 40% (51.56 DRD; P < .0001).[Conclusions] This study suggests that an ASP for NHs appears to be associated with a decrease in total consumption of antimicrobials and prevalence of MDROs. This trial did not find benefits associated with educational interviews, probably due to the coronavirus disease 2019 pandemic.[Clinical Trials Registration] NCT03543605.Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore